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Isotropic-cholesteric transition in liquid-crystalline gels
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In a nematic gel, the appearance of nematic order is accompanied by a spontaneous elongation of the gel
parallel to the nematic director. If such a gel is made chiral, it has a tendency to form a cholesteric helical
texture, in which local elongation of the gel parallel to the nematic director is suppressed due to the require-
ment of elastic compatibility. We show that a conical helix in which the director makes an oblique angle with
respect to the helix axis serves as an energy minimizing compromise between the competing tendencies for
elongation and twisting. We find the dependence of the helical cone angle and pitch on the strength of the
chirality, and determine the change in sample shape at the isotropic to cholesteric phase transition.
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I. INTRODUCTION

A nematic gel is basically a polymer gel embedded in
nematic solvent@1#. To make these two systems compatib
the polymer of the gel is normally formed from the monom
molecules that have a nematogen-like side chain attache
the reactive group that will form the polymer backbone.
in an ordinary polymer gel, the volume fraction of nema
solvent is about 90%. The fundamental interaction betw
the polymer chains and the nematic is an orientational c
pling. Here we will assume that the flexible polymer bac
bone has a tendency to be aligned parallel to the nem
director. The primary implication of this coupling is that
the isotropic-to-nematic phase transition, a typical polym
coil in the gel transforms from a spherical object in the is
tropic phase to a prolate ellipsoid aligned with its long a
parallel to the director in the nematic phase. Because
polymer coils are cross-linked in the gel, this shape trans
mation carries over from the individual polymer coils to t
sample as a whole, leading to a spontaneous elongatio
the entire sample parallel to the director.

This simple view of the transition assumes that the dir
tor is uniformly aligned throughout the sample. Experime
tally this is found not to be the case in real materials, unl
some step has been taken to bias the orientation of the d
tor in the material@2,3#. In an unbiased sample, some kind
macroscopically isotropic, multidomain nematic appears,
exact nature of which is not currently known. Since spon
neous elongation parallel to the director minimizes the f
energy, this multidomain state must combine some degre
local elongation, along with overall average isotropy. T
problem is to see how to combine local elongations of ma
different orientations in an elastically compatible way.

In this paper, we study a problem that has elements of
general problem alluded to above. We examine the ques
of how a single domain of a cholesteric mesophase can f
at the isotropic to cholesteric transition. In the ordinary ch
lesteric helix, the underlying nematic director is oriented p
pendicular to the helix axis. If one tries to imagine loc
spontaneous elongations parallel to the director, there
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serious problem, since every quarter turn of the helix,
elongations would be in orthogonal directions, which
clearly impossible. We suggest as a possible solution to
problem, a compromise between the full twisting of the ch
lesteric helix and the overall elongation of the sample. It i
conical helix in which at every point in the helix, the direct
rotates by an angleu toward the helix axis, and the samp
can elongate parallel to the helix axis. A 90° rotation wou
change the cholesteric into a nematic, with the maxim
elongation of the sample. We explore the possibility th
some smaller rotation angle will minimize the free energy
a compromise between elongation and twisting.

II. THEORY

To study the isotropic-cholesteric transition we model t
gel following the approach of Ref.@4#. We describe the ori-
entational degrees of freedom using the symmetric-trace
nematic order parameterQi j , rather than a directorn, in
order to describe the development of orientational order. T
gel is modeled as an isotropic elastic medium; its free ene
can be written in terms of the right Cauchy-Green tensorui j ,
or equivalently the left Cauchy-Green tensorv i j . The latter
tensor transforms like a rank-2 tensor under rotations in
target space of the elastic medium, i.e., the space define
the locations of the mass pointsafter a distortion. The former
tensor, on the other hand, transforms like a rank-2 ten
under rotations in the reference space, defined by the lo
tions of the mass pointsbeforea distortion occurs. The nem
atic order parameter tensorQi j also transforms as a rank-
tensor in the target space. Thus, in constructing the free
ergy, the coupling of the elastic degrees of freedom to
nematic degrees of freedom must involve contractions ofQi j
with v i j , rather thanui j . The Cauchy-Green tensors a
given by

ui j 5
1

2
~] iuj1] jui1] iuk] juk!, ~1!
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v i j 5
1

2
~] iuj1] jui1]kui]kuj !, ~2!

where u„x… is the displacement vector associated with
elastic distortion, and] i denotes]/]xi , with xi the i th com-
ponent of the position vector of the mass points in the re
ence space. Note that Tru=5Tr v= in general, while to linear
order in u„x…, the two elastic tensors are equal. We use
summation convention throughout, summing over repea
indices, which span the three-dimensional reference spa

The free energy densityf of the gel consists of an isotro
pic elastic termf el(u= ), a termf Q8 (Q

=
) describing the nematic

degrees of freedom~including gradient terms!, and a termf C
that couples the elastic and nematic degrees of freedom

f 5 f el~u
=
!1 f Q8 ~Q

=
!1 f C . ~3!

The elastic energyf el(u= ) is given by

f el~u
=
!5

1

2
l~Tru

=
!21m Tru

=

2, ~4!

wherel andm are the Lame´ coefficients. It suffices to con
sider only terms quadratic inui j .

The free energyf Q8 (Q
=

) describing the nematic degrees
freedom is a sum of gradient@5# and bulk terms:

f Q8 ~Q
=

!5
1

4
K1~« i jk] jQik12qoQi j !

21
1

4
K0~] jQi j !

2

1
1

2
r Q8 Tr Q

=

22w3 Tr Q
=

31w48~Tr Q
=

2!2. ~5!

The elastic constantsK0 and K1 are related to the Fran
elastic constants and the nematic order parameterS by

K225K1S2, ~6!

K115K335
S2

2
~K01K1!, ~7!

whereK11,K22, andK33 are the splay, twist, and bend Fran
constants, respectively,qo is the cholesteric torsion of th
mesogenic molecules, and« i jk is the fully antisymmetric
Levi-Civita tensor. The pitch of the ordinary cholesteric he
would be 2p/q0. Terms of higher order inQi j would be
required to break the equality of the bend and splay ela
constants@6#.

The simplest coupling between the elastic and nem
degrees of freedom is given by

f C52s Tr u= Tr Q
=

222t Tr v=Q
=

, ~8!

just as in the case of theI -N transition. Herev
=̃

is the

symmetric-traceless part ofv i j : ṽ i j 5v i j 2
1
3 d i j vkk . In fact,

the only difference between the energyf used here and the
corresponding one used in Ref.@4# is the presence inf of the
gradient terms proportional toK0 andK1, which are required
to describe cholesteric ordering.
03170
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As in Ref. @4#, it is convenient to complete the squares
the terms inf involving Tru= andv=̃ and write

f 5
1

2
B@Tr u=2~s/B!Tr Q

=

2#21m Tr@v
=̃

2~ t/m!Q
=

#21 f Q ,

~9!

where

f Q5
1

4
K1~« i jk] jQik12qoQi j !

21
1

4
K0~] jQi j !

21
1

2
r Q TrQ

=

2

2w3 TrQ
=

31w4~TrQ
=

2!2, ~10!

with r Q5r Q8 22(t2/m) andw45w482(s2/2B). HereB is the
bulk modulus of the gel, given in terms of the Lame´ coeffi-
cients byB5l1 2

3 m.
We now consider the isotropic-cholesteric transiti

within mean-field theory, minimizing the free energyf as a
function of Tru= , and the independent components of t
symmetric-traceless tensorsṽ i j , andQi j . This minimization
requires care on two scores. First, elastic compatibility m
be ensured. The six quantities Tru

=
,ṽ i j must obey compatibil-

ity equations consistent with the existence of an underly
single-valued continuous displacement fieldu(x). If we lin-
earize the Cauchy-Green elastic tensors, compatibility
quires@7#

]y
2S ṽxx1

1

3
Tru
= D1]x

2S ṽyy1
1

3
Tru
= D52]x]yṽxy , ~11!

]z
2S ṽyy1

1

3
Tru
= D1]y

2S 1

3
Tru
=
2 ṽxx2 ṽyyD52]y]zṽyz ,

~12!

]x
2S 1

3
Tru
=
2 ṽxx2 ṽyyD1]z

2S ṽxx1
1

3
Tru
= D52]x]zṽxz ,

~13!

]y]zS ṽxx1
1

3
Tru
= D5]x~2]xṽyz1]yṽxz1]zṽxy!, ~14!

]x]zS ṽyy1
1

3
Tru
= D5]y~]xṽyz2]yṽxz1]zṽxy!, ~15!

]x]yS 1

3
Tru
=
2 ṽxx2 ṽyyD5]z~2]xṽyz1]yṽxz2]zṽxy!.

~16!

Second, minimizing with respect to the nematic degre
of freedom requires anansatzfor the nature of the ordering
While gel ‘‘blue phases’’ could in principle form, with loca
elongations parallel to the double twist axes, here we c
6-2
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sider the simpler possibility of a conical helical phase, wh
will allow the gel to elongate along the pitch axis~with small
shears about this axis!, yet still gain twist energy from the
helical ordering. Minimization of the free energy will dete
mine the optimal opening angle of the cone. A conical he
also forms in ordinary cholesterics in the presence of suita
strong~but not too strong! magnetic fields, ifK22.K33 @8#.
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The qualitative similarity between a cholesteric in a ma
netic field and a cholesteric gel is not surprising, given
form of the coupling proportional tot appearing inf C .

Assuming that the pitch axis in the ordered state lies alo
the z axis, and the director makes an angleu with the x-y
plane~so thatu50 corresponds to the ordinary helix!, Qi j is
given by
Q5SS cos2u cos2qz2
1

3

1

2
cos2u sin 2qz

1

2
sin 2u cosqz

1

2
cos2u sin 2qz cos2u sin2qz2

1

3

1

2
sin 2u sinqz

1

2
sin 2u cosqz

1

2
sin 2u sinqz sin2u2

1

3

D , ~17!
-
-

whereS is the magnitude of the nematic order parameter
q is the torsion of the conical helix in the gel. These lat
two quantities will be determined from the minimization pr
cedure.

Within a mean-field theory treatment, there will be n
dependence on thex and y coordinates, in which case th
compatibility equations,~11!, ~14!, and~15! are trivially sat-
isfied and Eqs.~12!, ~13! and ~16! reduce, respectively, to

]z
2S ṽyy1

1

3
Tru
= D50, ~18!

]z
2S ṽxx1

1

3
Tru
= D50, ~19!

]z
2ṽxy50. ~20!

These latter compatibility equations represent integra
~i.e., holonomic! constraints on the components of the elas
tensor. We expect these components to be proportiona
sinqz or cosqz, and thus integrating these equations p
duces the constraints

ṽxx1
1

3
Tru
=
2C50, ~21!

ṽyy1
1

3
Tru
=
2C50, ~22!

ṽxy50, ~23!

whereC is independent ofz, and we have assumed cylindr
cal symmetry about thez axis. While the componentṽxy
could be nonzero on the basis of Eq.~20!, minimization off
along with the form ofQi j , Eq. ~17!, shows that the equilib-
rium value ofṽxy is in fact zero.
d
r

le
c
to
-

For simplicity, we consider from this point on the incom
pressible limit,B→` ~in fact, real gels are nearly incom
pressible!, in which case

Tru
=
50, ~24!

ṽxx5 ṽyy5C. ~25!

Using Eqs. ~23!–~25!, we minimize f with respect to
C,ṽxz , and ṽyz and find

2C2~ t/m!@Qxx1Qyy#50, ~26!

2m@ ṽxz2~ t/m!Qxz#50, ~27!

2m@ ṽyz2~ t/m!Qyz#50. ~28!

Using Eqs.~17! and ~26!–~28!, the free energyf in the
incompressible limit reduces to

f 5
S2

2 H 1

2
~K01K1!q2 sin2u cos2u1K1~q cos2u2qo!2

1
1

3
K1qo

21
t2

m
cos4uJ 1

1

3
r QS22

2

9
w3S31

4

9
w4S4.

~29!

Minimizing f with respect tou, we find

] f

]u
5sin 2uH K1q~2q cos2u1qo!

1
1

4
~K01K1!q2 cos 2u2~ t2/m!cos2uJ

50, ~30!

while minimizing with respect toq yields
6-3



de

y

l

gy
g
pl
n

l-

s
ng

f
a
ce

tant,
by
or
lv-
ted

rgy

the
the
one
-
der
in

o
a
ly

ROBERT A. PELCOVITS AND ROBERT B. MEYER PHYSICAL REVIEW E66, 031706 ~2002!
] f

]q
5

1

2
~K02K1!q cos2u1K1qo2

1

2
~K01K1!q50.

~31!

Finally, minimizing with respect toS yields

] f

]S
5SH 1

2
~K01K1!q2 sin2u cos2u1K1~q cos2u2qo!2

1
2

3
r Q1~ t2/m!cos4uJ 2

2

3
w3S21

16

9
w4S350.

~32!

Equation~30! has the same form as the equation that
termines the optimal value ofu for a cholesteric with mag-
netic susceptibility anisotropyDx in an effective magnetic
field H, with

DxH2[2~ t2S2/m!cos2u. ~33!

Using Eqs.~31! and ~30!, the values ofq and u which
minimize f obey

1

4
~K01K1!q25~ t2/m!cos2u. ~34!

In terms of the constant

b5q0S m

tSDAK33

2m
, ~35!

and using Eq.~7!, this relationship can be written as

q5q0

cosu

b
. ~36!

Note thatq andq0 have the same sign.
Since the ratio ofK33 to K22 plays an important role, we

define this ratio asg for the discussion below.
Using Eq.~36! to eliminateq, we find that the free energ

can be written as

f 5
t2S2

mg H ~12g!cos6u1
3

2
g cos4u22b cos3u1

4

3
b2J

1
1

3
r QS22

2

9
w3S31

4

9
w4S4, ~37!

and the solution to Eq.~30! obeys

~12g!cos3u1g cosu2b50. ~38!

Note thatb is independent ofS @recall Eq.~7!#, so this equa-
tion is independent ofSand the determination of the optima
angleu is therefore independent of the value ofS, as long as
nematic order exists. However, as can be seen from Eq.~32!,
S does depend onu.

The constantb2 is a measure of the chiral bending ener
in the conical helixK33q0

2 measured in terms of the couplin
energy of the nematic order to the strain field in the sam
To picture the trade-off between spontaneous elongatio
the nematic and the chiral energy of the helix, start withb
50; for this value, the free energy is minimized foru
03170
-

e.
of

5p/2, a simple nematic with no helix. For smallb, cosu
'b/g or u'p/22b/g, and the helix appears withq
5q0 cosu/b'q0 /g. In other words, even the slightest chira
ity produces a helix, with a small cone anglef[p/22u
'b/g, and a pitchP'2pg/q0 in which bend is the domi-
nant curvature, as indicated by the factorg. The factorg
also determines how the cone angle grows, i.e., howu de-
creases, with increasingq0 or increasingb, as shown in Fig.
1.

Real materials have positive values ofg of the order of
two. As seen in Fig. 1, for values ofg less than about 1.5, a
b is increased to 1,u decreases smoothly to zero, restori
the ordinary cholesteric helix. For larger values ofg, asb
grows,u decreases smoothly, and then at some value ob
greater than 1,u jumps discontinuously to zero. This is
trade-off between bend and twist energy in the helix; sin
the twist elastic constant is much less than the bend cons
the initially bend-dominated helix can lower its energy
this transformation. While the helix is either gradually
suddenly changing from bend to twist, its pitch is also evo
ing toward the value determined by pure twist, as indica
by Eq. ~36!.

To summarize, other than the scaling of the helix ene
to the strain energy in determining the constantb, the geo-
metric properties of the conical helix are determined by
nematic elastic energies. It is interesting to estimate
strength of the chirality needed to produce a significant c
angle. If we look at the caseb50, the spontaneous elonga
tion of the sample on entering the nematic phase is of or
tS/m. Let us set this to a value 2. The other factor needed
evaluatingb for the conical helix is the lengthAK33/2m.
Estimating K33510211 J/m andm5103 J/m3, for a weak
gel, this length is of order 0.1mm. Using these numbers, t
achieve a value ofb of about 0.5, we need a helix pitch of
few tenths of a micrometer. This pitch is common for high
chiral nematics.

FIG. 1. The optimum angleu ~in degrees! of the conical helix as
a function of the dimensionless chirality parameterb, for three
values of the elastic constant ratiog[K33/K2252, 1, and 0.5, for
the upper, middle, and lower curves, respectively.
6-4
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Now we turn to the nematic ordering and the elastic
formation of the sample due to the presence of the con
helix.

Because of the form of the coupling of the nematic ord
to the strain field, the energy of the conical helix only ent
into a term in the free energy proportional toS2, meaning

FIG. 2. The distortion of a cylindrical isotropic gel~left! after
undergoing a transition to the conical helix phase~right! with a
small cone angle.
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that the chiral energy simply lowers the transition tempe
ture of the isotropic to cholesteric phase transition, relative
what it would be forq050. This effect is familiar for cho-
lesterics, in general.

More interesting is the effect of the conical helix on th
shape of the sample. The elastic distortion induced by
phase transition can be determined from Eqs.~17!, ~23!, ~25!,
and ~26!, with the result that the strain tensorv

=
is given by

FIG. 3. The distortion of a cylindrical isotropic gel~left! after
undergoing a transition to the conical helix phase~right! with a
large cone angle.
v
=

5S tS

2m S cos2u2
2

3D 0
tS

2m
sin 2u cosqz

0
tS

2m S cos2u2
2

3D tS

2m
sin 2u sinqz

tS

2m
sin 2u cosqz

tS

2m
sin 2u sinqz

tS

m S 2

3
2cos2u D D . ~39!
nt
st

a
gel
he
ng
u-
ffer
cies
ok-
e

s-
3.

da-
nd
This equation can be easily solved for the displacem
field u, consistent with the compatibility requirements a
the incompressibility, with the results:

ux5
tS

2m
~cos2u22/3!x1

tS

mq
sin 2u sinqz, ~40!

uy5
tS

2m
~cos2u22/3!y2

tS

mq
sin 2u cosqz, ~41!

uz52
tS

m
~cos2u22/3!z. ~42!

We illustrate this displacement field in Figs. 2 and
where we show the deformation of a cylindrical gel in t
isotropic phase, which then undergoes a transition to the c
lesteric phase. As anticipated, for a small cone anglef
5p/22u, such that cos2u,2/3, the sample is elongated pa
allel to the helix axis and the transverse shears prod
ridges on its surface, as shown in Fig. 2. For large co
angle, i.e., for cos2u.2/3, the helix is close to its twist form
and in fact the sample has shrunk along the helix axis,
expanded laterally, again with ridges, as shown in Fig.
This unexpected deformation represents a compromis
which again there is elongation parallel to the local direc
in the helix, but elastic compatibility demands equal elon
tion perpendicular to both the director and the helix ax
nt

o-

ce
e

d
.
in
r
-
,

with shrinkage parallel to the helix axis to maintain consta
volume. The possibility of this mode of deformation was fir
pointed out to us by Warner@9#.

III. CONCLUSIONS

In conclusion, we have found that the conical helix is
possible free energy minimizing texture of the cholesteric
phase. It allows for a combination of local elongation of t
system parallel to the nematic director, with some twisti
due to the chirality of the material. It is fascinating to spec
late on the existence of more complex textures that may o
an even better accommodation of the competing tenden
for spontaneous elongation and twist. We are currently lo
ing into the possibility of periodic textures, similar to th
blue phases, which may play this role.
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@2# J. Küpfer and H. Finkelmann, Makromo. Chem., Rapid Co
mun.12, 717 ~1991!.

@3# G. R. Mitchell, F. J. Davis, and W. Guo, Phys. Rev. Lett.71,
2947 ~1993!.

@4# T. C. Lubensky, R. Mukhopadhyay, L. Radzihovsky, and
Xing, Phys. Rev. E66, 011702~2002!.
03170
.

@5# D. C. Wright and N. D. Mermin, Rev. Mod. Phys.61, 385
~1989!.

@6# T. C. Lubensky, Phys. Rev. A2, 2497~1970!.
@7# I. S. Sokolnikoff,Mathematical Theory of Elasticity~McGraw-

Hill, New York, 1946!.
@8# R. B. Meyer, Appl. Phys. Lett.12, 281 ~1968!.
@9# Mark Warner~private communication!.
6-6


