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Isotropic-cholesteric transition in liquid-crystalline gels
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In a nematic gel, the appearance of nematic order is accompanied by a spontaneous elongation of the gel
parallel to the nematic director. If such a gel is made chiral, it has a tendency to form a cholesteric helical
texture, in which local elongation of the gel parallel to the nematic director is suppressed due to the require-
ment of elastic compatibility. We show that a conical helix in which the director makes an oblique angle with
respect to the helix axis serves as an energy minimizing compromise between the competing tendencies for
elongation and twisting. We find the dependence of the helical cone angle and pitch on the strength of the
chirality, and determine the change in sample shape at the isotropic to cholesteric phase transition.
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I. INTRODUCTION serious problem, since every quarter turn of the helix, the
elongations would be in orthogonal directions, which is
A nematic gel is basically a polymer gel embedded in aclearly impossible. We suggest as a possible solution to this
nematic solvenf1]. To make these two systems compatible, problem, a compromise between the full twisting of the cho-
the polymer of the gel is normally formed from the monomerlesteric helix and the overall elongation of the sample. It is a
molecules that have a nematogen-like side chain attached f&®nical helix in which at every paint in the helix, the director
the reactive group that will form the polymer backbone. Asfotates by an anglé toward the helix axis, and the sample
in an ordinary polymer gel, the volume fraction of nematic can elongate parallel to the helix axis. A 90° rotation would
solvent is about 90%. The fundamental interaction betweefhange the cholesteric into a nematic, with the maximum
the polymer chains and the nematic is an orientational couélongation of the sample. We explore the possibility that
pling. Here we will assume that the flexible polymer back-Some smaller rotation angle will minimize the free energy as
bone has a tendency to be aligned parallel to the nemati2 Compromise between elongation and twisting.
director. The primary implication of this coupling is that at
the isotropic-to-nematic phase transition, a typical polymer
coil in the gel transforms from a spherical object in the iso- Il. THEORY

tropic phase to a prolate ellipsoid aligned with its long axis . : . .
parallel to the director in the nematic phase. Because the To study the isotropic-cholesteric transition we model the

polymer coils are cross-linked in the gel, this shape transforgel following the approach of Ref4]. We describe the ori-

mation carries over from the individual polymer coils to the entational degrees of freedom using the symmetric-traceless

sample as a whole, leading to a spontaneous elongation gematic order_ parametd;; , rather tha_n a d.|recton, in
the entire sample parallel to the director. order to describe the development of orientational order. The

This simple view of the transition assumes that the direc-geI is moo!eled.as an isotropic glastic medium; its free energy
tor is uniformly aligned throughout the sample. Experimen—can be'wrltten in terms of the right Cauchy-Green tengor
tally this is found not to be the case in real materials, unles§" equivalently the left Cauchy-Green tensgr. The latter
some step has been taken to bias the orientation of the direfensor transforms like a _rank-z_tens_or under rotations in the
tor in the material2,3]. In an unbiased sample, some kind of target space of the elastic ”?ed'“m' €., the space defined by
macroscopically isotropic, multidomain nematic appears, théhe locations of the mass poiraftera d'StOF“O”- The former
exact nature of which is not currently known. Since sponta—tensor’ on .the qther hand, transforms I|ke'a rank-2 tensor
neous elongation parallel to the director minimizes the l‘ree“_nder rotations in th_e reference_ space, defined by the loca-
energy, this multidomain state must combine some degree ns of the mass pointseforea distortion occurs. The nem-
local elongation, along with overall average isotropy. The@lic Order parameter tensgl; also transforms as a rank-2

problem is to see how to combine local elongations of mam}ensor in the target space. Thu_s, in constructing the free en-
different orientations in an elastically compatible way. ergy, the coupling of the elastic d_egrees of freedpm o the
In this paper, we study a problem that has elements of thggama‘uc degrees of freedom must involve contraction@;pf
general problem alluded to above. We examine the questioffith vij. rather thanu;;. The Cauchy-Green tensors are
of how a single domain of a cholesteric mesophase can forfVen by
at the isotropic to cholesteric transition. In the ordinary cho-
lesteric helix, the underlying nematic director is oriented per-
pendicular to the helix axis. If one tries to imagine local u--=£(&-u-+a-u-+0-u Jiuy) 1)
spontaneous elongations parallel to the director, there is a T VAT AT ARk
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As in Ref.[4], it is convenient to complete the squares in

1
vij =5 (diUj+ ;Ui + dylidyuy), (@ the terms inf involving Tru andy and write
where u(x) is the displacement vector associated with the 5
elastic distortion, and; denotesy/dx;, with x; theith com- f= EB[TTLJ—(S/B)TFQZ]Z—F,LL Trlv—(t/1)Q1*+fq,
ponent of the position vector of the mass points in the refer- B - -
ence space. Note that T=Try in general, while to linear
order inu(x), the two elastic tensors are equal. We use the
summation convention throughout, summing over repeatenere
indices, which span the three-dimensional reference space.

The free energy densitiyof the gel consists of an isotro- B , 1 , 1 5
pic elastic termf ¢ (u), a termfo(Q) describing the nematic fQ_ZKl(siJk(?JQikJFZqOQ”) + ZKO('?J'Q”) + ErQTrg
degrees of freedortincluding gradient termsand a ternf -
that couples the elastic and nematic degrees of freedom

€)

— Wy Tr93+w4(Tr92)2, (10)

f=fe(u)+fo(Q)+fc. 3 with ro=ro—2(t%p) andw,=w,—(s*2B). HereB s the
bulk modulus of the gel, given in terms of the Lameeffi-
cients byB=\+3u.
1 We now consider the isotropic-cholesteric transition
fo(U)==N(Tru)?+ u Tru?, (4)  within mean-field theory, minimizing the free enerfys a
= 2 = = function of Tru, and the independent components of the
where\ and . are the Lameoefficients. It suffices to con- SYmmetric-traceless tensarg, andQ;; . This minimization
sider only terms quadratic in, requires care on two scores. First, elastic compatibility must
ij -
The free energy 5(Q) describing the nematic degrees of be ensured. The six quantltlesuTv” must obey compatibil-

freedom is a sum of gradief§] and bulk terms: ity equations consistent with the existence of an underlying
single-valued continuous displacement fialck). If we lin-

B ’ earize the Cauchy-Green elastic tensors, compatibility re-
Q(Q) 1(8|Jk‘? Q|k+2qu|]) +7 Ko(a QI]) quires[7]

The elastic energye(u) is given by

TrQ —w, Tr Q3+W4(TrQ )2. (5

30 Ut

1 ~
vyyt —Trlj) =204dyvyy, (11

1 2
—Trl;l +d5 3

2
dy 3

The elastic constant&, and K; are related to the Frank

elastic constants and the nematic order paranttsr o~ 1 ) ~ o~ ~
I\ vyyT ZTru |+ 00| 2 Tru— vy —vyy | =2dyd0y,,
Kpp=K,S? (©) 3 = 3 -
22 1< (12)
SZ
Ki11= K33:7(K0+ K1), (7 o1 -~ - S~ 1 ~
X §Trl=1—vxx—vyy + 05| vyxT §TI’I;I =209z,
whereK1,K5,, andK ;5 are the splay, twist, and bend Frank 13

constants, respectively, is the cholesteric torsion of the
mesogenic molecules, ang, is the fully antisymmetric
Levi-Civita tensor. The pitch of the ordinary cholesteric helix dyd,
would be 27/q,. Terms of higher order irQ;; would be
required to break the equality of the bend and splay elastic
constantg6].

The simplest coupling between the elastic and nematic Ixdz
degrees of freedom is given by

Uyxt

1 ~ ~ ~
§TrL=]) = (9)(( - (7ny2+ ayvxz'i' azvxy)i (14)

- 1 - - ~
Uyt §Trl=,|) =dy(Ix0y,— Uyt dUyy), (15

fe=—sTruTrQ?—2t TryQ, (8) 1 - -
B - Ixdy §Trl='l_vxx Uyy d— &xvyz"_ayvxz zvxy)-
just as in the case of thé-N transition. Here}_j is the (16)

symmetric-traceless part of; : 5”- =0jj —éaijvkk. In fact,

the only difference between the enerfjysed here and the Second, minimizing with respect to the nematic degrees
corresponding one used in R@4] is the presence ifiof the  of freedom requires aansatzfor the nature of the ordering.
gradient terms proportional ¥, andK, which are required While gel “blue phases” could in principle form, with local
to describe cholesteric ordering. elongations parallel to the double twist axes, here we con-
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sider the simpler possibility of a conical helical phase, whichThe qualitative similarity between a cholesteric in a mag-
will allow the gel to elongate along the pitch axisith small  netic field and a cholesteric gel is not surprising, given the
shears about this ajjsyet still gain twist energy from the form of the coupling proportional tbappearing infc .

helical ordering. Minimization of the free energy will deter-  Assuming that the pitch axis in the ordered state lies along
mine the optimal opening angle of the cone. A conical helixthe z axis, and the director makes an anglevith the x-y
also forms in ordinary cholesterics in the presence of suitablylane(so that¢=0 corresponds to the ordinary heliQ;; is
strong(but not too strongmagnetic fields, iK,,>K33[8].  given by

1 1 1
cogf cogqz— 3 Eco§6 sin2qz 5 sin 20 cosqz
1 _ _ 1 1 .
Q=S Ecoszasm2qz co§0sm2qz—§ 5sin20sinqz |, (17
1 . 5 1 20si i 1
Esm 0 cosqz Esm #sinqz Si 0—§

whereSis the magnitude of the nematic order parameter and For simplicity, we consider from this point on the incom-
g is the torsion of the conical helix in the gel. These latterpressible limit,B—< (in fact, real gels are nearly incom-
two quantities will be determined from the minimization pro- pressible, in which case

cedure.

Within a mean-field theory treatment, there will be no Tru=0, (24)
dependence on the andy coordinates, in which case the B
compatibility equations(11), (14), and(15) are trivially sat- ;XX:;W:C' (25)
isfied and Eqs(12), (13) and(16) reduce, respectively, to

Using Egs. (23)—(25), we minimize f with respect to

- 1 ~ ~ )
0’;5 gyt §TrL=J) =0, (18) C,vy;, andvy, and find
2C — (t/1)[ Qyut Qyy] =0, (26)
- 1
75| Vnct §T“=‘> =0. (19 20Dy~ (1 1) Q] =0, 27
9203y =0. (20) 2plvy,~ (/n)Qy,]=0. (28)

Using Egs.(17) and (26)—(28), the free energy in the

These latter compatibility equations represent integrabk?ncompressible limit reduces to

(i.e., holonomig constraints on the components of the elastic
tensor. We expect these components to be proportional to <2
singz or cosgz and thus integrating these equations pro- f=7

{§(K°+ K,)q?sirfd cos6+K,(qcoso—q,)?
duces the constraints

1 +1K 2+t2 g0 +1 s? 2 §+4 st
- = —Co oS —-w —w,S".
Ut 5 TrU=C=0, (21) ERC 3797 973 "o
(29)
;yy+ %Trg—C=0, (22) Minimizing f with respect tod, we find
AR 201 K SO+
nyz 0, 23) g SN 19(—qco To)
whereC is independent of, and we have assumed cylindri- +%(K0+K1)q2 cos 20— (12 ) co2
cal symmetry about the axis. While the component,,
could be nonzero on the basis of EB0), minimization off -0 (30)
along with the form ofQ;; , Eq.(17), shows that the equilib- '
rium value ofEXy is in fact zero. while minimizing with respect tq yields
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of 1 1
%Z E(KO_Kl)q coS0+Kq,— E(Ko+ K1)q=0.
(3D

Finally, minimizing with respect t& yields

of 1
2555 (Kot K,)g? sirfd cog 6+ K (qcoso—q,)?

16
—w,S*=0.

2 &
WS+ 5

2
< 2 _
+ 3I’Q+(t {u)costo 3

(32

Equation(30) has the same form as the equation that de-

termines the optimal value of for a cholesteric with mag-
netic susceptibility anisotropy y in an effective magnetic
field H, with

AxH?=2(t2S?/ ) cog 6. (33

Using Egs.(31) and (30), the values ofg and # which
minimize f obey

1
Z(K°+ K1)g%=(t?/ u)cogé. (34
In terms of the constant
o ) K

and using Eq(7), this relationship can be written as
cosé
5
Note thatq and gy have the same sign.
Since the ratio 0K 35 to K5, plays an important role, we
define this ratio ag for the discussion below.

Using Eq.(36) to eliminateq, we find that the free energy
can be written as

d=do (36)

128 3 4
- _ — _ _ np2
f o (1—y)coLo+ Zycos“a 2B cos o+ 38

1 2 4
+ §I’QSZ— §W353+ §W4S4, (37)
and the solution to E¢30) obeys
(1—y)cos 6+ ycosd— B=0. (39

Note thatg is independent o8[recall Eq.(7)], so this equa-
tion is independent of and the determination of the optimal
angled is therefore independent of the value®fas long as
nematic order exists. However, as can be seen fron{3x,.
Sdoes depend o#.
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FIG. 1. The optimum anglé (in degreesof the conical helix as
a function of the dimensionless chirality paramegar for three
values of the elastic constant ratie=K;3/K»,=2, 1, and 0.5, for
the upper, middle, and lower curves, respectively.

=/2, a simple nematic with no helix. For smadl, cosé
~Bly or 0~ml2—pBly, and the helix appears withy
=(p CosbIB~qy/y. In other words, even the slightest chiral-
ity produces a helix, with a small cone angfe=7/2— 60

~ Blvy, and a pitchP~2my/q, in which bend is the domi-
nant curvature, as indicated by the factpr The factorvy
also determines how the cone angle grows, i.e., lfode-
creases, with increasingy, or increasing3, as shown in Fig.
1.

Real materials have positive values pfof the order of
two. As seen in Fig. 1, for values ofless than about 1.5, as
B is increased to 1¢ decreases smoothly to zero, restoring
the ordinary cholesteric helix. For larger valuesygfas 8
grows, 6 decreases smoothly, and then at some valug of
greater than 19 jumps discontinuously to zero. This is a
trade-off between bend and twist energy in the helix; since
the twist elastic constant is much less than the bend constant,
the initially bend-dominated helix can lower its energy by
this transformation. While the helix is either gradually or
suddenly changing from bend to twist, its pitch is also evolv-
ing toward the value determined by pure twist, as indicated
by Eq. (36).

To summarize, other than the scaling of the helix energy
to the strain energy in determining the constgntthe geo-
metric properties of the conical helix are determined by the
nematic elastic energies. It is interesting to estimate the
strength of the chirality needed to produce a significant cone
angle. If we look at the cas@=0, the spontaneous elonga-
tion of the sample on entering the nematic phase is of order
tS/u. Let us set this to a value 2. The other factor needed in

The constanB? is a measure of the chiral bending energy evaluating8 for the conical helix is the length/K34/2u.
in the conical heli¥< 3305 measured in terms of the coupling Estimating Kzs=10"11J/m and x=10* Jin?, for a weak
energy of the nematic order to the strain field in the samplegel, this length is of order 0.m. Using these numbers, to
To picture the trade-off between spontaneous elongation adchieve a value o of about 0.5, we need a helix pitch of a

the nematic and the chiral energy of the helix, start wéth
=0; for this value, the free energy is minimized for

few tenths of a micrometer. This pitch is common for highly
chiral nematics.
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FIG. 3. The distortion of a cylindrical isotropic gédeft) after
undergoing a transition to the conical helix phdsight) with a
large cone angle.

FIG. 2. The distortion of a cylindrical isotropic gédeft) after
undergoing a transition to the conical helix phasght) with a
small cone angle. that the chiral energy simply lowers the transition tempera-

ture of the isotropic to cholesteric phase transition, relative to

Now we turn to the nematic ordering and the elastic de-what it would be forqy=0. This effect is familiar for cho-

formation of the sample due to the presence of the conicdksterics, in general.
helix. More interesting is the effect of the conical helix on the

Because of the form of the coupling of the nematic ordershape of the sample. The elastic distortion induced by the
to the strain field, the energy of the conical helix only entersphase transition can be determined from Ef%), (23), (25),
into a term in the free energy proportional 8, meaning and(26), with the result that the strain tensoris given by

tS 2 tS |
ﬂ(cos?a—g) 0 mst&cosqz
tS 2 tS | i
v= 0 ﬂ(C°§0_§) ﬂsmzesqu . (39
tS | tS | . tS(2
ﬂsmzacosqz ﬂsmzasqu ;(5—00520)

This equation can be easily solved for the displacemenivith shrinkage parallel to the helix axis to maintain constant
field u, consistent with the compatibility requirements andvolume. The possibility of this mode of deformation was first
the incompressibility, with the results: pointed out to us by Warndg].

tS tS | :
u,=-—(cog0—2/3x+ —sin26sinqz, (40
2u e Ill. CONCLUSIONS

tS tS
Uy:ﬂ(00§9—2/3)y— msm 20cosqz, (41 In conclusion, we have found that the conical helix is a
possible free energy minimizing texture of the cholesteric gel
tS phase. It allows for a combination of local elongation of the
Uz=— ;(co§0—2/3)z. (42 system parallel to the nematic director, with some twisting

due to the chirality of the material. It is fascinating to specu-

We illustrate this displacement field in Figs. 2 and 3 late on the existence of more complex textures that may offer
where we show the deformation of a cylindrical gel in the@n even better accommodation of the competing tendencies
isotropic phase, which then undergoes a transition to the chdOr Spontaneous elongation and twist. We are currently look-
lesteric phase. As anticipated’ for a small cone ang|e Il"lg Into the pOS.S|b|||ty Of perIOC.iIC textures, Slml|al‘ to the
= m/2— 6, such that cd®<2/3, the sample is elongated par- blue phases, which may play this role.
allel to the helix axis and the transverse shears produce
ridges on its surface, as shown in Fig. 2. For large cone
angle, i.e., for cc®>2/3, the helix is close to its twist form ACKNOWLEDGMENTS
and in fact the sample has shrunk along the helix axis, and
expanded laterally, again with ridges, as shown in Fig. 3. We thank T. C. Lubensky and M. Warner for helpful dis-
This unexpected deformation represents a compromise ioussions, and G. Loriot for assistance with Figs. 2 and 3.
which again there is elongation parallel to the local directorThis work was supported by the National Science Founda-
in the helix, but elastic compatibility demands equal elongation under Grant Nos. DMR-9873849, DMR-9974388, and
tion perpendicular to both the director and the helix axis, DMR—-0131573.
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